A new time-projecting controller based on 3LP model to recover intermittent pushes
نویسندگان
چکیده
In this paper, we present a new walking controller based on 3LP model. Taking advantage of linear equations and closed-form solutions of 3LP, the proposed controller can project the state of the robot at any time during the phase back to a certain event for which, a discrete LQR controller is designed. After the projection, a proper control policy is generated by the expert discrete controller and used online. This projecting architecture reacts to disturbances with minimal delay and compared to discrete controllers, it provides superior performance in recovering intermittent external pushes. Further analysis of closed-loop eigenvalues and disturbance rejection shows that the proposed time-projecting controller has strong stabilization properties. Controllable regions also show that the projecting architecture covers most of the maximal controllable set of states. It is computationally much faster than model predictive controllers, but still optimal.
منابع مشابه
Time-Projection control on 3LP, a simple idea to deal with intermittent pushes online
In this article, we propose a new controller for recovering intermittent pushes during bipedal locomotion. We use 3LP as a template model which can provide closed-form solutions for state evolution. The idea behind our controller is to project the perturbed state of current time-step back to the beginning of the hybrid phase, use the expertise of a discrete controller and then apply the resulti...
متن کاملTime-projection control to recover inter-sample disturbances, application to bipedal walking control
We present a new walking controller based on 3LP, a 3D model of bipedal walking that is composed of three pendulums to simulate falling, swing and torso dynamics. Taking advantage of linear equations and closed-form solutions of 3LP, the proposed controller projects intermediate states of the biped back to the beginning of the phase for which a discrete LQR controller is designed. After the pro...
متن کاملHuman Gait Control Using Functional Electrical Stimulation Based on Controlling the Shank Dynamics
Introduction: Efficient gait control using Functional Electrical Stimulation (FES) is an open research problem. In this research, a new intermittent controller has been designed to control the human shank movement dynamics during gait. Methods: In this approach, first, the three-dimensional phase space was constructed using the human shank movement data recorded from the healthy subjects. Then...
متن کاملScalable closed-form trajectories for periodic and non-periodic human-like walking
We present a new framework to generate human-like lower-limb trajectories in periodic and non-periodic walking conditions. In our method, walking dynamics is encoded in 3LP, a linear simplified model composed of three pendulums to model falling, swing and torso balancing dynamics. To stabilize the motion, we use an optimal time-projecting controller which suggests new footstep locations. On top...
متن کاملReconstructing human push recovery reactions using a three dimensional under-actuated bipedal robot
This paper presents the ability of hybrid zero dynamics (HZD) feedback control method to reproduce human like movements for walking push recovery of an under-actuated 3D biped model. The balance recovery controller is implemented on a three-dimensional under-actuated bipedal model subjected to a push disturbance. The biped robot model is considered as a hybrid system with eight degrees of freed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1605.03039 شماره
صفحات -
تاریخ انتشار 2016